Parallel Hybrid Optimization Methods
نویسنده
چکیده
Solving efficiently large benchmarks of NP-hard permutation-based problems requires the development of hybrid methods combining different classes of optimization methods. Indeed, it is now acknowledged that such methods perform better than traditional optimization methods when used separately. The key challenge is how to find connections between the divergent search strategies used in each class of methods in order to build efficient hybridization strategies. Genetic algorithms (GAs) are very popular population-based metaheuristics based on stochastic evolutionary operators. The hybridization of GAs with tree-based exact methods such as Branch-and-Bound is a promising research trend. B&B algorithms are based on an implicit enumeration of the solution space represented as a tree. Our hybridization approach consists in providing a common solution and search space coding and associated search operators enabling an efficient cooperation between the two methods. The tree-based representation of the solution space is traditionally used in B&B algorithms to enumerate the solutions of the problem at hand. In this thesis, this special representation is adapted to metaheuristics. The encoding of permutations as natural numbers, which refer to their lexicographic enumeration in the tree, is proposed as a new way to represent the solution space of permutation problems in metaheuristics. This encoding approach is based on the mathematical properties of permutations (Lehmer codes, inversion tables, etc.). Mapping functions between the two representations (permutations and numbers) and special search operators adapted to the encoding are defined for general permutation problems, with respect to the theory of representation. This common representation allows the design of efficient cooperation strategies between GAs and B&B algorithms. In this thesis, two hybridization schemes combining GAs with B&B based on this common representation are proposed. The two hybridization approaches HGABB/HAGABB (Hybrid Adaptive GA-B&B) and COBBIGA (cooperative B&B interval-based GA), have been validated on standard benchmarks of one of the hardest permutation-based problems, the three dimensional quadratic assignment problem (Q3AP). In order to solve large benchmarks of permutationbased problems, a parallelization for computational grids is also proposed for the two hybrid schemes. This parallelization is based on space decomposition techniques (the decomposition by intervals) used in parallel B&B algorithms. From the implementation point of view, in order to facilitate further design and implementation of hybrid methods combining metaheuristics with tree-based exact methods, a hybridization C++ framework integrated to the framework for metaheuristics ParadisEO is developed. The new framework is used to conduct extensive experiments over the computational grid Grid’5000. te l-0 08 41 96 2, v er si on 1 5 Ju l 2 01 3
منابع مشابه
Solving a New Multi-objective Unrelated Parallel Machines Scheduling Problem by Hybrid Teaching-learning Based Optimization
This paper considers a scheduling problem of a set of independent jobs on unrelated parallel machines (UPMs) that minimizesthe maximum completion time (i.e., makespan or ), maximum earliness ( ), and maximum tardiness ( ) simultaneously. Jobs have non-identical due dates, sequence-dependent setup times and machine-dependentprocessing times. A multi-objective mixed-integer linear programmi...
متن کاملA Hybrid Unconscious Search Algorithm for Mixed-model Assembly Line Balancing Problem with SDST, Parallel Workstation and Learning Effect
Due to the variety of products, simultaneous production of different models has an important role in production systems. Moreover, considering the realistic constraints in designing production lines attracted a lot of attentions in recent researches. Since the assembly line balancing problem is NP-hard, efficient methods are needed to solve this kind of problems. In this study, a new hybrid met...
متن کاملA New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm
Over the past few decades great efforts were made to solve uncertain hybrid optimization problems. The n-Queen problem is one of such problems that many solutions have been proposed for. The traditional methods to solve this problem are exponential in terms of runtime and are not acceptable in terms of space and memory complexity. In this study, parallel genetic algorithms are proposed to solve...
متن کاملA comparison of algorithms for minimizing the sum of earliness and tardiness in hybrid flow-shop scheduling problem with unrelated parallel machines and sequence-dependent setup times
In this paper, the flow-shop scheduling problem with unrelated parallel machines at each stage as well as sequence-dependent setup times under minimization of the sum of earliness and tardiness are studied. The processing times, setup times and due-dates are known in advance. To solve the problem, we introduce a hybrid memetic algorithm as well as a particle swarm optimization algorithm combine...
متن کاملAsynchronous parallel hybrid optimization combining DIRECT and GSS
In this paper we explore hybrid parallel global optimization using DIRECT and asynchronous generating set search (GSS). Both DIRECT and GSS are derivative-free and so require only objective function values; this makes these methods applicable to a wide variety of science and engineering problems. DIRECT is a global search method that strategically divides the search space into ever-smaller rect...
متن کاملA New Hybrid Parallel Simulated Annealing Algorithm for Travelling Salesman Problem with Multiple Transporters
In today’s competitive transportation systems, passengers search to find traveling agencies that are able to serve them efficiently considering both traveling time and transportation costs. In this paper, we present a new model for the traveling salesman problem with multiple transporters (TSPMT). In the proposed model, which is more applicable than the traditional versions, each city has diffe...
متن کامل